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We consider a procedure for calculating the pair correlation function in the con-
text of cluster variation methods (CVM). As specific cases, we study the pair
correlation function in the paramagnetic phase of the Ising model with nearest
neighbors, next to nearest neighbors, and plaquette interactions in two and
three dimensions. In presence of competing interactions, the so-called disorder
line separates in the paramagnetic phase a region where the correlation function
has the usual exponential behavior from a region where the correlation has an
oscillating, exponentially damped behavior. In two dimensions, using the pla-
quette as the maximal cluster of the CVM approximation, we calculate the
phase diagram and the disorder line for a case where a comparison is possible
with known results for the eight-vertex model. In three dimensions, in the CVM
cube approximation, we calculate the phase diagram and the disorder line in
some cases of particular interest. The relevance of our results for experimental
systems like mixtures of oil, water, and surfactant is also discussed.

KEY WORDS: Ising models; CVM; correlation functions; disorder line.

I. INTRODUCTION

Statistical systems are exactly solvable only in the simplest cases and often
in unphysical spatial dimensions. In three dimensions, in particular, solu-
tions of common statistical models like the Ising model are not known. On
the other hand, numerical simulations sometimes are not a very efficient
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tool for studying systems with complex phase diagrams where an analytical
control of the phase behavior of the system would be very helpful. If one
is not interested in the critical behavior of the system, a very useful
generalization of mean field methods for studying the phase diagram of
spin systems is given by the cluster variation method (CVM).(1�3) This
method generally gives a very accurate description of the phase diagram
that can be appreciated when a comparison is possible with exact or Monte
Carlo results?(4) It has been extensively used for the calculation of equi-
librium thermodynamics properties of spin models.

The CVM is based on the application of the variational principle of
the statistical mechanics with the simplification that the density matrix of
the system is factorized over clusters inside which the system is treated
exactly. The size of these cluster, sometimes called ``maximal clusters,''
depends on the accuracy requested and on the necessity of including all the
interaction of the system and of reproducing the structure of the ground-
states. Correlation functions have been calculated in the framework of
CVM approximation only in few simple cases. Some properties of the pair
correlation function of the two-dimensional Ising model have been studied
in the pair (Bethe) and plaquette approximation levels of the CVM.(5) The
CVM has been also applied to the study of the correlation function in the
disordered phase of the two-dimensional ANNNI (Axial Next Nearest
Neighbors Ising) model.(6)

In this paper we present a procedure for the calculation of correlation
functions that can be generally applied to any choice of maximal cluster in
the CVM scheme. It can be also implemented in numerical calculations
together with the Natural Iteration Method(7) which is a numerical mini-
mization procedure very convenient for calculating the maximal cluster
density matrix in the most complex cases. In particular we apply our proce-
dure to study the behavior of the pair correlation functions in the
paramagnetic phase of the Ising model with nearest neighbors (NN), next-
to-the-nearest neighbors (NNN), and plaquette (P) interactions in two and
three dimensions. In three dimensions, the phase diagram of this model can
be correctly studied by implementing the CVM cube approximation with 8
independent site magnetizations in order to take into account the complex
ground-state structure. Our goal will be to calculate the pair correlation
function in the same approximation used for the phase diagram.

The model with NN, NNN, and P interactions has the same hamil-
tonian of the symmetric two-dimensional eight-vertex models.(8) In three-
dimensions this model is interesting also because it constitutes a realization
of interacting random surfaces on a lattice.(9, 10) Indeed, the Peierls inter-
faces between domains of different sign can be interpreted as an ensemble
of interacting surfaces with a Boltzmann weight depending on the area,
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the mean curvature and the length of the intersection lines between the
surfaces.(10) It has been shown (11, 12) that the phase diagram of this model,
studied in mean field approximation, can well describe the phase diagram
of experimental systems like fluid mixtures of water, oil, and surfactant or
other complex fluids. Recently, the model with NN, NNN, and P interac-
tions has been also put in relation with string theory and in particular with
a discretized string model (the so-called gonihedric model) characterized by
a zero energy cost for the area of surfaces.(13) The CVM cube approxima-
tion has been applied to the study of the phase diagram of the model with
NN, NNN, and P interactions in the parameter region corresponding to
the gonihedric model.(14)

A question of particular interest in the phase diagram of models with
competing interactions is the behavior of the pair correlation function in
the paramagnetic phase. Here, generally, the so called ``disorder line''
separates a region where the pair correlation has the usual exponentially
damped behavior from a region where the correlation develops an
oscillatory exponentially damped behavior.(15) In the case of the three-
dimensional model with NN, NNN, P interactions, this latter region can
be identified with the microemulsion phase of surfactant systems which is
a disordered phase but with an ordered structure on short length-scales.(16)

Therefore, in this model, the possibility of calculating the correlation func-
tions in the same CVM approximation used for the phase diagram is
interesting also for some physical applications.

The plan of the paper is the following. In Section II we briefly sum-
marize the CVM procedure and discuss how correlation functions can be
calculated. In Section III we consider the bidimensional eight-vertex model.
We calculate the disorder line and compare our results with other results
existing in literature. In Section IV we will carry out the calculation of the
correlation functions in the three-dimensional case and study the disorder
line in two cases of particular physical interest. Some conclusions will
follow.

II. CVM AND CORRELATION FUNCTIONS

In this section we first briefly describe the CVM approximation. We
refer to the papers of refs. 2 for further details. Then we will discuss how
the pair correlation functions can be evaluated starting from the CVM free
energy.

Suppose to have a spin hamiltonian defined on a given lattice as

&;H(_)= :
: # I

J: _: (1)
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where ; is the inverse of the temperature, J: is the interaction parameter
for the cluster : and _: is the product of spins _i on the sites i # :. The first
step of the CVM procedure is to choose a set of maximal clusters M in
which the system is treated exactly such that each cluster : # I is included
in one maximal cluster M # M. Then the CVM approximated free energy
of the system can be expressed2 as the minimum of

;F=& :
: # I

J: !:+ :
:�M # M

a: Tr \: ln \: (2)

Here the first sum is the internal energy of the system with the !: being
variational parameters representing the expectation value of the multisite
product of spins _: . The second term in the r.h.s of (2) is the entropy of
the system and is a sum over all the clusters which are possible subclusters
of the maximal clusters. The set of coefficients a: depends on the lattice
structure and on the choice of the maximal cluster; they can be easily found
applying the Eqs. (16$) in the paper by An.(2) The trace Tr is the sum over
the allowed configurations and \: is the density matrix for the cluster :. In
the case of Ising spins _i=\1 one can write

\:=2&n: _1+ :
;�:

_;!;& (3)

where n: is the number of the sites in the cluster :, the sum extends over
all the subclusters ; of the cluster :, and _;=>i # ; _ i . A consequence of
Eq. (3) is that !;=Tr _;\; for a cluster ;�:. The parameters !: have to
verify the minimization conditions

0=
�F

�!:
(4)

In order to study the pair correlation function for a group of spins _# ,
it is convenient to introduce a local external field in the starting
hamiltonian coupled to all clusters of the same type of #. For one of these
clusters the equilibrium condition becomes

h#=
�F

�!#
(5)

Therefore the connected pair correlation function is given by

(_#0
_#r�

) c=
�2F

�h#0
�h#r�

=
�!#0

�h#r�

(6)
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where we have used the linear response theorem and the equilibrium condi-
tions (4). Now, the free energy F(J: , h#) can be considered formally as a
function of the independent variables !# instead of the h# . Therefore the last
term of the above equation can be evaluated through its inverse matrix that
can be calculated by differentiating (5) with respect to !#r�

:

�h#0

�!#r�

=
�2F

�!# 09
�!#r�

#A#0 , #r�
(7)

Once that the above matrix is obtained, its Fourier transform can be
simply inverted and will give the requested correlation function in Fourier
space. However, except that in the simplest cases, writing the matrix A#0 , #r�

can be a complicate task from a computational point of view and requires
some further considerations that we present here in a general way and that
will become more transparent when applied to specific examples in the next
sections.

In the matrix A#0 , #r�
there appear generally derivatives like �!: ��!# (see,

e.g., Eqs. (15, 16)) where # is a cluster of different type of :. The evaluation
of these derivatives can be performed by differentiating the state equations
for !: with respect to !# . This procedure will give a system of linear equa-
tions

�2F

�!: �!#
=0 (8)

in the variables �!: ��!# . Some of the equations (8) are homogeneous. More
specifically these situations may occur: (i) the cluster : belongs only to one
maximal cluster. In such a case the equation (8) is homogeneous or not,
depending if # is external or not to that maximal cluster. (ii) The cluster :
belongs to more than one maximal cluster and # is external to the maximal
clusters with : in common. In such a case the equation (8) is homogeneous.
(iii) The cluster : belongs to more than one maximal cluster and # belongs
to one of the maximal clusters with : in common. In this case the equation
is generally not homogeneous. It can be shown that a solution of the
system (8) can be obtained by setting equal to zero all the terms �!: ��!#

appearing in homogeneous equations. This procedure will be more clear
and it will be shown in explicit cases in the next two sections.

Finally we observe that a great simplification occurs when we want to
calculate the correlation function in the paramagnetic phase of a system
with only even interactions. In this case only the derivatives �!: ��!# , where
: and # have both an odd (or even) number of sites, are different from zero.

71Correlation Functions by CVM for Ising Model



III. PAIR CORRELATION IN THE 8-VERTEX MODEL

In the following of the paper our principal aim will be to calculate the
two-spin correlation function and the disorder line of the model defined by
the hamiltonian

&;H=J1 :
(x, y)

_x _y+J2 :
((x, y))

_x _y+J3 :
x
ygw

z

_x_w_z_y (9)

where ; is the inverse of the temperature and the _x are Ising variables
defined on the sites of a cubic lattice. The three sums respectively refer to
nearest, next-to-the nearest neighbors and plaquettes of the lattice. In this
section we consider the CVM plaquette approximation of this hamiltonian
on a square lattice and we use it to calculate the phase diagram, the
correlation function in the disordered phase and the disorder line in the
case J3=0. In the following section we will consider the three-dimensional
case.

3.1. The Plaquette Approximation and the Phase Diagram

The natural choice for studying the phase diagram of the model (9) in
two dimensions is the CVM approximation level where the maximal cluster
with independent density matrix is the plaquette cell of the square lattice.
When a magnetic-field term is added to (9), the CVM free-energy density
functional F to be minimized is given by

;F=&J1 :
(xy)

Tr(_x_y\(xy))&J2 :
((xy))

Tr(_x_y\((xy)))

&J3 :
x
yg

w
z

Tr(_x_y_w_z\x
ygw

z
)&; :

x

hx Tr(_x\x)

+ :
x
yg

w
z

Tr L(\x
yg

w
z
)& :

(xy)

Tr L(\(xy))+:
x

Tr L(\x) (10)

where the spins _x in the argument of the traces are the spins in the cluster
one is considering, L(a)=a log a for a real number a and \: is the density
matrix related to the cluster of a given type : of the lattice; in the following
we need also the matrix \[xyz] where [xyz] denotes a three site corner
cluster. The density matrix \g is subjected to the constraint Tr \g=1 and
the smaller cluster density matrices are obtained by partial traces of \g .
Notice that we have not assumed any a priori symmetry property for our
density matrices; this implies that all possible states with different magnetic
order in a single plaquette can be studied by this approximation.
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The plaquette density matrix \g can be calculated by minimizing the
free energy (10) via the natural iteration equations;(7) then, after partial
traces, one can work out the phase diagram of the system. In Fig. 1 the
portion of the phase diagram with J3=0 is shown. The line separating the
ferromagnetic and the paramagnetic phases is critical, while on the line
separating the paramagnetic and the lamellar phase��sometimes called
Super AntiFerromagnetic (SAF) phase��there is a tricritical point at J1=
0.405\0.005, J2=&0.4045\0.0015. The existence of a first order phase
transition between the paramagnetic and the lamellar phase is also confirmed
by other authors(18, 19) that have used the plaquette CVM approximation
to study the phase diagram of the 8-vertex model. Our results for the loca-
tion of the tricritical point are in agreement with results of refs. 18 and 19.
The discrepancy of this result with the results of Monte Carlo simulations
and perturbations methods where a nonuniversal critical behavior is found
��for a list of references see ref. 19, may be an artifact of the CVM
approximation.

3.2. The Correlation Function

For the calculation of the correlation function it is convenient to write
the free energy (10) as a function of the parameters

mx=Tr(_x \x)

lxy=Tr(_x_y \(xy))

cxy=Tr(_x_y \((xy))) (11)

kxyz=Tr(_x _y_z\[xyz])

dxywz=Tr(_x_y _w_z \x
ygw

z
)

that are related to the density matrices by:

\x= 1
2 (1+mx_x)

\(xy)= 1
4 (1+mx_x+my_y+lxy _x_y)

\((xy))= 1
4 (1+mx_x+my_y+cxy _x_y)

\x
ygw

z
= 1

16 (1+mx _x+my_y+mw_w+mz_z

+lxw_x_w+lwz_w_z+lzy _z_y+lyx _y_x

+cxz_x_z+cyw _y_w+kyxw_y_x_w

+kxwz _x_w_z+kwzy_w_z_y

+kzyx _z_y_x+dxywz _x_w _z_y) (12)
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We have seen in Section II that in order to calculate the pair correlation
function, we need to evaluate the matrix

\ �hx

�my +mz=0 \z
(13)

Therefore we consider the state equation for the magnetization �F��mi=0:

;hi=&1
4 :

(iy)

Tr(_i log \(iy))+ 1
16 :

i
ygw

z

Tr(_i log \ i
ygw

z
)+ 1

2 Tr(_i log \i) (14)

where the first and the second sums are respectively taken over the pairs
of nearest neighbors and the plaquettes containing the site i. We start from
the diagonal elements of the matrix (13) given by

;
�hi

�mi
=&

1
16

:
(iy)

Tr \ 1
\(iy) ++

1
4

Tr \ 1
\i+

+
1

256
:

i
yg

w
z

Tr _ _i

\ i
ygw

z
\_i+_y _z_w

�kyzw

�mi

+2_i _y _z
�kiyz

�mi
+_w_ i_y

�kwiy

�m i +& (15)

where all the derivatives are evaluated in mz=0 \z and �kzwi ��mi=
�kiwz ��mi has been assumed. Derivatives like �lxy ��mi , �cxy��m i , �dxywz��mi

do not appear because they are odd functions of mi evaluated at
mi=0. Moreover in the paramagnetic phase lxy=l, cxy=c and dxywz=
d \x, y, w, z. To simplify the notation we introduce

k1=
�kiyz

�mi
, k2=

�kwiy

�m i
and k3=

�kyzw

�mi
(16)

While the parameters l, c and d can be calculated as usual by solving
the equilibrium state equations by means of the Natural Iteration Method,
the calculation of k1 , k2 and k3 is a little bit more intriguing. As explained
in Section II it is convenient to consider the state equation obtained by
setting equal to zero the derivative of the free energy with respect to kxyz

Tr(_x _y _z log \x
ygw

z
)=0 (17)
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Now, by differentiating this equation with respect to mj with j=x, y, w, we
obtain the system:

Tr __x_y _z

\x
ygw

z
\_j+ :

[x$, y$, z$]/x
yg

w
z

_x$_y$ _z$

�kx$y$z$

�mj +&=0 j=x, y, w (18)

By solving this system of three equations in the variables k1 , k2 and k3 one
obtains

k1=
A(C&D)

(D+B+2A)(D+B&2A)

k2=
(C&D)(B2+BD&2A2)

(D&B)(D+B+2A)(D+B&2A)
(19)

k3=
2A2(C+D&2B)+(B2&DC )(B+D)

(D&B)(D+B+2A)(D+B&2A)

where

A=Tr \_x_y

\x
yg

w
z
+ ; B=Tr \_y_w

\x
ygw

z
+

(20)

C=Tr \_x_y _w_z

\x
ygw

z
+ ; D=Tr \ 1

\x
ygw

z
+

The insertion of Eqs. (19), (20) in (15) gives the diagonal elements of
(13). Going further, by differentiating (14) with respect to mj with i, j
nearest neighbours, one realizes that derivatives like �kixy��mj with j � x

y g i
z

appear. However, these derivatives are zero. Indeed, by differentiating the
state equation for kxyz with respect to mj with j external to the plaquette
of [xyz], we obtain an equation similar to (18) but without the first term
_j in circular brackets. Changing the site j we again obtain a systems for
the derivatives �kxyz ��mj with j external to the plaquette of [xyz], but in
this case these derivatives are zero since the system is homogeneous.

A consequence of the above considerations is that the matrix (13) can
be written as

; \ �hi

�my+mz=0 \z
={

#
&#1

i= y
(iy)

&#2

0
((iy))
otherwise

(21)
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with

#=1&
4

1&l 2+(1+k2+k3)
1+2c+d

(1+4l+2c+d )(1&4l+2c+d )

+(1&k2+k3)
1

1&2c+d
+(1&k3)

2
1&d

&
8k1 l

(1+4l+2c+d )(1&4l+2c+d )
(22)

&#1=
l

1&l 2&
2l

(1+4l+2c+d )(1&4l+2c+d )

+k1 \ 1+2c+d
(1+4l+2c+d )(1&4l+2c+d )

&
1

1&d +
&

2(k2+k3) l
(1+4l+2c+d )(1&4l+2c+d )

(23)

and

&#2=
1
4

(1+k2+k3)
1+2c+d

(1+4l+2c+d )(1&4l+2c+d )

&
1
4

(1&k2+k3)
1

1+2c+d
&

k2

2(1&d )

&
2k1 l

(1+4l+2c+d )(1&4l+2c+d )
(24)

The inverse of the Fourier transform of the matrix (21) gives the pair
correlation function in Fourier space, or structure factor. It reads as

S(p)=
1

#&2#1 �2
+=1 cos( p+)&2#2(cos( p1+ p2)+cos( p1& p2))

(25)

3.3. The Disorder Line

The line where the coefficient of p2 in the denominator of (25) is zero
is the so called Lifshitz line where the structure factor develops a maximum
at a value of p different from zero. It is given by #1+2#2=0 and is reported
in Fig. 1. The other interesting line for the behavior of the correlation func-
tion is the disorder line where the correlation in real space changes its
behavior from a purely exponential decay to an oscillating exponentially
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File: 822J 223811 . By:XX . Date:20:11:98 . Time:07:08 LOP8M. V8.B. Page 01:01
Codes: 1460 Signs: 890 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Phase diagram of model (9) in D=2 with J3=0. The dashed lines are critical lines
separating the disordered phase from the ferromagnetic and the lamellar (SAF) phases. The
first-order transition between the paramagnetic and SAF phases is represented by a solid line.
The dotted line is the one-dimensional line of equation (28), while the light dashed and dash-
dotted lines are the mean field and plaquette approximation calculation of the disorder line,
respectively.

decay. In order to calculate this line it is convenient to take the spherical
average of the expansion of (25) at small p� so that the structure factor can
be written as:(20)

S(p)=
S(0)

1+bp2+cp4 (26)

The spherical average can be simply realized by expanding (25) until the
fourth power of p� and taking px= py= p�- 2.(20) The result is

b=
#1+2#2

#&4(#1+#2)
; c=&

1
24

#1+8#2

#&4(#1+#2)
(27)
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On the disorder line the zero of the denominator of (25) changes from pure
imaginary to complex. This happens when b2&4c=0. In Fig. 1 we plot the
disorder line obtained by Eqs. (27).

In some bidimensional model with competing interactions the disorder
line coincides with a locus (One-Dimensional-Line) where the model can
be solved exactly and has typical one-dimensional correlations.(21) The
ODL line has been calculated for the model (9) with J3=0 and is given
by(22)

cosh 2J1=
e4J2+e&4J2+2e&2J2

2(1+e2J2)
(28)

It would be interesting to know whether this line, also reported in Fig. 1,
coincides with the disorder line of the model (9). In ref. 23 the ODL line
has been compared to the disorder line obtained in mean field approxima-
tion. Here we have an approximation which correctly reproduce the topol-
ogy of the phase diagram of the model also at low temperatures. This
allows us to compare our approximation for the disorder line with the
expression (28) at any value of J1 , J2 . We see that the disorder line
calculated by CVM is very close to the ODL Eq. (28), so that it is
probably true that the two lines coincide. For further comparison we have
plotted in Fig. 1 also the disorder line obtained by mean-field approxima-
tion.

IV. THE 3D ISING MODEL WITH NN, NNN AND
PLAQUETTE INTERACTIONS

In this section we study in the CVM approximation the phase diagram
and the disorder line of the model (9) defined on the cubic lattice. The
ground states of the model (9) are shown in Fig. 2. They can be simply
obtained by minimizing for each value of the parameters J1 , J2 , J3 the
energy of a single cube.(10) When two or more cube configurations have the
same minimum energy, it may be possible to construct a set of degenerate
ground states by tiling the whole lattice with the degenerate cube configura-
tions. We have chosen to study the particular cases J2=J3 and J3=&2J2

since in these cases the structure of the ground states is of particular interest
for the applications.(10, 11) The diagrams of the ground states for these cases
are shown in Fig. 3.

Due to the fact that the ground states can be expressed in terms of
single cube configurations, it is necessary for a correct implementation of
the CVM approximation to consider the cube with 8 independent site
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Fig. 2. Ground states of the 3D model. The dot v indicates _=+1 while _=&1 in the
remaining sites. The labels refer both to the phase and to the dotted subclusters. The com-
plementary (non-dotted) subclusters can be referred to adding a ``c'' after the label.

magnetizations as the maximal cluster in the CVM implementation. Then
the approximated free-energy is given by

;F=&J1 :
(xy)

Tr(_x_y\(xy))&J2 :
((xy))

Tr(_x_y\((xy)) )

&J3 :
x
ygw

z

Tr(_x_y _w_z \x
yg

w
z
)&; :

x

hx Tr(_x\x)+:
c

Tr L(\c)

& :
x
ygw

z

Tr L(\x
ygw

z
)+ :

(xy)

Tr L(\(xy))&:
x

Tr L(\x) (29)

where \c is the density matrix of an elementary cube. Also here, as in the
bidimensional case, the coefficients of the entropic terms have been found
by applying the prescriptions of ref. 2.
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File: 822J 223814 . By:XX . Date:20:11:98 . Time:07:08 LOP8M. V8.B. Page 01:01
Codes: 1774 Signs: 1246 . Length: 44 pic 2 pts, 186 mm

Fig. 3. Ground states of the 3D model for the values J2=J3 and J2=&J3 �2 of the coupling
constants.

4.1. The Phase Diagram with J2=J3

This case has been studied in refs. 10, 11 by using mean-field approxima-
tion and Monte Carlo simulations. In terms of dual surfaces, it corresponds
to the case where the curvature, defined as the number of adjacent plaquet-
tes forming a right angle, is not weighted.(10) The phase diagram found by
applying the natural iteration scheme to the CVM free-energy (29) is
shown in Fig. 4. At positive J2 the ferromagnetic phase is stable. On the
transition line separating the ferromagnetic and the paramagnetic phases
there is a tricritical point at J tr

1 =0.029, J tr
2 =0.0635. The coordinates of the

tricritical point in mean field approximation and by Monte Carlo simula-
tions are respectively given by J tr, MF

1 =0.11, J tr, MF
2 =0.0275, J tr, MC

1 =0.03,
Jtr, MC

2 =0.064. A relevant difference between the mean-field and the CVM
phase diagram is that in the CVM approximation the paramagnetic phase
extends until zero temperature, in agreement with results of Monte Carlo
simulations. At negative J2 the ordered stable configurations can be con-
structed starting by the cubes in Fig. 5. The phase between the phases 4�
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File: 822J 223815 . By:XX . Date:20:11:98 . Time:07:08 LOP8M. V8.B. Page 01:01
Codes: 1825 Signs: 1351 . Length: 44 pic 2 pts, 186 mm

Fig. 4. Phase diagram of model (9) in D=3 with J3=J2 . The dash-dotted line is the disor-
der line in cube approximation. The dotted line is the Lifshitz line. In the narrow strip
between the 7 and 4� phases we find a type-7 phase with the magnetizations m of Fig. 5 equal
to zero. As before, solid and dashed lines represent first-order and critical transition lines.

and 7 in Fig. 4 has the same configuration of phase 7 but with the
magnetizations m=0. This phase is separated from the phases 4� and 7 by
a first-order and a critical line, respectively. The phases 4� and 7 are bicon-
tinuous in the sense that the domains of spins of one sign form a connected
network invading all the lattice and intertwined with the network formed
by the spins of the other sign.(10) Also mean field and Monte Carlo simula-
tions show stable bicontinuous configuration in this region. However, there
are discrepancies between the phase diagrams obtained by different
methods at J2<0. The origin of the discrepancies is probably in the par-
ticular nature of the ground states at J2<&|J1 |�4. As it can be seen from
Fig. 3, the cube configurations 4, 4� , 7 are degenerate for J2<&|J1 |�4 and
an infinite number of bicontinuous ground states can be built up using
these configurations. Here, probably, a low-temperature expansion is
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Fig. 5. Phases at finite temperature appearing in the diagram of Fig. 4. Capital letters
indicate bigger magnetizations.

needed to understand the correct nature of the stable phases, but this will
be the matter for a future study. It is interesting to observe that on the
transition line between the paramagnetic phase and the 4� phase at negative
J2 there is a tricritical point located at J1=0.87, J2=&0.32. It would be
interesting to check the existence of this tricritical point by Monte Carlo
simulations.

4.2. The Disorder Line

In three-dimensions the calculation of the disorder line proceeds in the
same two steps as in the bidimensional case but with complications due to
the higher number of variational parameters in the \c expansion. This
implies the existence of many terms like the quantities k1 , k2 , etc. of the
previous section to evaluate.

The first step is the calculation of the elements of the inverse correla-
tion matrix (13), that in tree dimensions becomes
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# i= y
&#1 (iy)

; \ �hi

�my+mz=0 \z
={&#2 ((iy)) (30)

&#3 (((iy)))
0 otherwise

The explicit expressions of the coefficients #i are given in Appendix A for
clearness purposes. Going on with the second part of the calculation, we
use these matrix elements to compute the coefficients (27) of the small-p�
expansion of the structure factor, that in three dimensions are given by:

b=
#1+4#2+4#3

#&6#1&12#2&8#3

; c=&
1

36
#1+16#2+28#3

#&6#1&12#2&8#3

(31)

Also here, as in the bidimensional case, a spherical average has been per-
formed taking px= py= pz= p�- 3. When b2&4c<0 the correlation func-
tion in real space is given by

G(r)=
const

r
e&r�! sin

2?r
$

(32)

where

$=
2?

[(1�2 - c)+(b�4c)]1�2
!=

1

[(1�2 - c)&(b�4c)]1�2
(33)

The disorder line corresponds to the condition b2&4c=0. The results for
the disorder line and for the Lifshitz line b=0 are shown in Fig. 4. At low
temperatures both the lines behave as J2=&J1 �4.

4.3. The Phase Diagram at J3=&2J2

The ground-state structure corresponding to this case is shown in
Fig. 3. We see that the ferromagnetic phase is bounded from a phase with
spin of different sign in alternate planes. We call this last phase a lamellar
phase. At finite temperature the phase diagram has been studied in mean
field approximation in a previous paper.(11) It can well describe the phase
diagram of experimental mixtures of oil, water, and surfactant. The CVM
approximation is the same used before and the calculation of the disorder
line also proceeds in the way already discussed in the preceding paragraph
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Fig. 6. Phase diagram of model (9) in D=3 with J3=&2J2 . The dash-dotted line is the dis-
order line; the dotted line is the Lifshitz line. In the inset, the region where the disorder and
the Lifshitz lines cross the first-order Ferro-Paramagnetic transition line is enlarged.

of this section. Therefore we can go on by describing the phase diagram
shown in Fig. 6.

At low temperatures and positive J2 the stable phase is the ferro-
magnetic one, while for negative J2 we find the lamellar phase being stable.
On the transition line between the ferromagnetic and the paramagnetic
phases there is a tricritical point at J1=0.273, J2=&0.049, with the first-
order part of the line joining the boundary of the lamellar phase region at
J1=0.305, J2=&0.077 (4-phase point). This feature, together with the
observation that the disorder line intersects the first-order ferro-para-
magnetic transition line in J1=0.29, J2=&0.065, between the tricritical
and the 4-phase point, well represents the experimental fact that the
microemulsion phase (corresponding to the region of the paramagnetic
phase below the disorder line) can coexist with the ordered homogeneous
phases.(11, 16) We also observe that the Lifshitz line intersects the ordered
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phases at the point J1=0.2965\0.0005; J2=&0.00705\0.00005. The
region close to the 4-phase point is shown in the inset of Fig. 6.

V. CONCLUSIONS

The CVM approximation is generally used for studying the topology
of phase diagrams of spin systems. In this paper we have focused on the
calculation of the correlation functions in the framework of this approxi-
mation. This calculation can become complicate expecially in the case of
three-dimensional systems and we have discussed the origin of these com-
plications. As particular models we have considered the Ising model with
NN, NNN, and plaquette interactions on the square and on the cubic lat-
tice. We have calculated the pair correlation function in the paramagnetic
phase of these models. We have also given new results about the phase
diagrams of these models for choices of parameters useful for the descrip-
tion of experimental systems.

In particular, in the two-dimensional case with zero plaquette interac-
tion, we have calculated the disorder line in the paramagnetic phase and
we have seen that it is very close to the One-Dimensional Line where the
model is exactly solvable. This strengthens the conjecture that the disorder
line and the ODL, line coincide also in this model. In the three-dimen-
sional case we have chosen two planes in the parameter space where the
phase diagram may have a relevance for the description of systems of inter-
acting surfaces with fluctuating topology. Fluid mixtures of oil, water, and
surfactant are an example of these systems. We have calculated the disorder
line and the Lifshitz line which limit regions of the paramagnetic phase
detectable through scattering experiments. Our results, shown in Figs. 4
and 6 confirm that the three-dimensional Ising model with NN, NNN, and
plaquette interactions can describe many of the experimental features
appearing in complex fluid mixtures.

VI. APPENDIX A

The matrix (30) can be evaluated through the same procedure shown
in Section III, starting from the single spin magnetization state equation
(14), that in 3D turns out to be:

;hi=
1

256 :
c % i

Tr(_i log \c)& 1
16 :

i
ygw

z

Tr(_ i log \ i
yg

w
z
)

+ 1
4 :

(iy)

Tr(_i log \(iy) )& 1
2 Tr(_i log \i) (34)
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Differentiating this equation with respect to the site magnetizations, we
realize that we have to deal with a long list of derivatives of the kind:
D:

i =�!:��mi where !:=Tr(_:\:) is the parameter in the expansion of the
density matrix corresponding to the subcluster :. By symmetry considera-
tions and taking into account that in the paramagnetic phase the only
derivatives different from zero are those from subclusters with an odd num-
ber of sites, we can reduce the number of derivatives to 33, listed in Fig. 7.
Repeating the procedure used in Section III to obtain (18), we can get to
a system of 33 linear equations which, although very long, can be
straightforwardly solved and it will not be reported here. The solution of
this system gives us the coefficients ki , ai , bi appearing in Fig. 7 and allows

Fig. 7. Derivatives D:
i =�!:��mi with respect to the magnetization mi in the site circled (see

App. A for the notations). ki , ai , and bi are respectively the derivatives of the 3-, 5- and 7-sites
subclusters, represented by the dots. From k1(a1) to k3(a3) the cluster considered is :=5(5c);
from k4(a4) to k9(a9), :=5� (5� c), from k10(a10) to k13(a13), :=1� (1� c), from a14 to a16 , :=5c
and there is no correpsonding ki ; from b1 to b4 , :=1c.
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us to calculate the expression of the matrix elements (30), that we write
down here explicitly:

#=8[C0c+6k1C 3+3k2C2+3k3C 6+3k4C2

+3k5C 4+3k6 C3+3k7C6�

+6k8C 7+6k9 C3� +k10C4� +3k11C2+3k12C3�

+k13C0� +6a1C3c+3a2C 2c

+3a3C6+6a14 C7+3a15 C4� +3a16C 3�

+3a4C2c+3a5C4c+3a6C3c+3a7C6�

+6a8C7+6a9 C3� +a10C3c+3a11C2c

+3a12 C3� +a13C0� +b1 C0+3b2C3c+3b3C2c+b4 C4c]

&12[P0c+2k1 P1+k2 P2+k3P0]+6L0c&1 (35)

&#1=4[C3+2k1(C2+C6+C7)+k2(2C3+C4� )

+k3(2C3+C3� )+k4(C4+2C3� )

+k5(C2+2C7)+k6(2C7+C6� )+k7(C3+2C3� )

+2k8(C3+C4+C3� )+2k9(C2+C7+C6� )

+k10C2+k11(C4� +C3� )+k12(2C2+C 0� )

+k13C3� +2a1(C2c+C6+C7)

+a2(2C 3c+C4� )+a3(2C3c+C3� )

+2a14(C3c+C4� +C 3� )+a15(C2c+2C7)

+a16(C6+2C 7)+a4(C4+2C3� )+a5(C2+2C7)

+a6(2C 7+C6� )+a7(C3+2C3� )

+2a8(C 3+C4+C3� )+2a9(C2+C7+C6� )+a10C 2+a11(C 4� +C3� )

+a12(2C2+C 0� )+a13C3� +b1C 3c+b2(C0+2C2c)

+b3(2C 3c+C4c)+b4C 2c]

&4[P1+k1(P2+P0)+k2 P1+k3P1]+L0 (36)
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&#2=2[C2+2k1(C3+C4� +C3� )+k2(C6+2C7)

+k3(C2+2C7)+k4(2C7+C6� )

+k5(C3+2C3� )+k6(C4+2C3� )

+k7(C2+2C7)+2k8(C2+C7+C6� )

+2k9(C3+C4+C3� )+k10 C3�

+k11(2C2+C0� )+k12(C4� +2C3� )+k13 C2

+2a1(C 3c+C4� +C 3� )+a2(C6+2C7)+a3(C2c+2C7)

+2a14(C2c+C6+C 7)

+a15(2C3c+C3� )+a16(2C3c+C4� )+a4(2C7+C6� )+a5(C3c+2C 3� )

+a6(C 4c+2C3� )+a7(C2c+2C7)+2a8(C2c+C 7+C6� )

+2a9(C 3c+C4c+C3� )

+a10C3� +a11(2C2c+C0� )+a12(C4� +2C3� )

+a13C2c+b1C 2c+b2(C4c+2C 3c)

+b3(C 0+2C3c)+b4 C3c]&[P2+2k1P1+k2P0+k3P2] (37)

&#3=C4+6k1C7+3k2 C3� +3k3C4� +3k4C 0c

+3k5C 6� +3k6 C2+3k7C4+6k8C3�

+6k9C 3� +k10C0� +3k11C 3� +3k12C2+k13C 4�

+6a1C7+3a2 C3� +3a3 C4�

+6a14 C3c+3a15C6+3a16C2c+3a4 C0c+3a5C6�

+3a6C2c+3a7C4c+6a8C3�

+6a9C3� +a10 C0� +3a11C3� +3a12C2c+a13C4�

+b1C 4c+3b2C2c+3b3C 3c+b4C0 (38)

where we used the notations: P0= 1
256 Tr(_x_y_z_w�\x

ygw
z
), P1=

1
256 Tr(_ i_ j �\i

j g
w
z
), P2= 1

256 Tr(_ i_j �\ i
ygw

j
), P0c= 1

256 Tr(1�\x
ygw

z
), L0=

1
16 Tr(_x_y �\(xy)), L0c= 1

16 Tr(1�\(xy) ) and C :=(1�(256)2) Tr(_: �\c),
: being the name of the cluster as they are classified in Fig. 2, and _:=
>i # : _i , as in Section II.
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